If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1751=16t^2
We move all terms to the left:
1751-(16t^2)=0
a = -16; b = 0; c = +1751;
Δ = b2-4ac
Δ = 02-4·(-16)·1751
Δ = 112064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112064}=\sqrt{64*1751}=\sqrt{64}*\sqrt{1751}=8\sqrt{1751}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{1751}}{2*-16}=\frac{0-8\sqrt{1751}}{-32} =-\frac{8\sqrt{1751}}{-32} =-\frac{\sqrt{1751}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{1751}}{2*-16}=\frac{0+8\sqrt{1751}}{-32} =\frac{8\sqrt{1751}}{-32} =\frac{\sqrt{1751}}{-4} $
| 3x-4x+6=2- | | -1035=-69n | | -1/2(x+2)11/2x=3 | | -7(3k+3)-7k=-49 | | -(5x-4)+2x=-3x+5 | | 5x=0.75(7x-1) | | 1/2(16x+8)=28 | | 4(m+3)=7m-3 | | (2x+8)+(3x+6)=7x | | p/3-(-22)=27 | | -120=5x-42+21x | | 15−6+3q=9 | | 2(b-24)+3(b-4)=30 | | n•1=5 | | p3− –22=27 | | 8(-3x-19)=-2(5x-8)+14 | | 6+12=-3(7x-6) | | 10x-(5x-2)=37 | | -2(5-4a)=-50 | | -4-0.2x11=-8x+10 | | 5x-2+3=3(x+30 | | 5(2x+8)=-25+45 | | 9x-6x=15+6 | | 6x+10x-8=16x+28 | | 4x+2+8x-6+90=180 | | 5(3x+5)-5=50 | | 8(p-83)=96 | | c*c-7=31 | | 8x-6x=14+28 | | 0.75(a-16)+2=a-4 | | k/3+7=5 | | 30+2k+5k=100 |